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Abstract 0 New approximate expressions for the weight fraction un- 
dissolved were obtained using the Taylor series expansion. These ap- 
proximations were tested using simulated data for multisized drug par- 
ticle populations. The resulting calculations show that: ( a )  the approxi- 
mations are not dependent on a knowledge of the analytical form of the 
particle-size density function, ( b )  the distribution effects are accounted 
for, but only a knowledge of the sample mean and standard deviation is 
required, and ( c )  the approximations (especially on a weight basis) lead 
to values within the limits of error in dissolution studies, thus posing the 
question of whether published exact expressions have practical value. 
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The effects of multisized particle distributions on dis- 
solution kinetics were studied using either experimental 
or simulated data (1-7). One area of particular concern has 
been the acceptability of treating the kinetics of dissolution 
for a multisized particle population with an approximate 
mathematical treatment for the kinetic model of inter- 
est. 

The importance of including the distribution effects was 
recognized in the mathematical treatment of a diffusional 
model proposed for the dissolution of micronized 
methylprednisolone (1, 2). The complexity of these 
equations led to simplified forms uia an approximation for 
the particle-size density function. 

Approximate expressions were discussed in connection 
with the cube root kinetic model (3-5). For example, an 
approximation to the cube root model was described for 
a log-normal particle-size population that relaxes to the 
exact cube root law when the standard deviation of the 
particle population approaches zero. However, such an 
approximation, requiring a knowledge of the mean and 
variance of the log normal population, has limited practical 
value (5). Certainly, the approximation could not be used 
intelligently unless the powder of interest was confirmed 
to obey the log-normal distribution and the parameters of 
the distribution could be estimated. 

An interest in an approximation illustrating the effects 
of different particle sizes derives, in part, from difficulties 
in obtaining monosized powder cuts for dissolution studies. 
The mathematical treatment of dissolution data from 
actual drug powders, which may contain a range of sizes, 
has often been based on the assumption of monosized 
particles. Recent papers (8, 9) proposed treatments of 
dissolution data on powders without a calculation of the 
effect of a distribution of particle sizes. Because of such 
difficulties, the relationship between dissolution theory 
and its experimental justification remains fragile. The 
approximations reported here enable one to estimate the 
effect of varying particle sizes on dissolution data and may 
strengthen the relationship between theory and data. 

Interest in an approximation can also be appreciated if 

one considers the co’mplex and cumbersome calculations 
involved. The use of a distribution function in connection 
with the dissolution model of interest, i.e., cube root, 
Dankwert’s, etc., requires integration over the random 
variable of particle size as well as a consideration of time. 
Therefore, any reasonable approximation is inviting. 

To date, no convenient treatment can be justified for any 
particular kinetic model with a particular distribution 
function. This report describes a simplified procedure that 
can be justified by a standard mathematical (and statis- 
tical) derivation. The procedure utilizes estimators of the 
dispersion of sizes in a powder, which are readily accessible 
from particle-size data (e.g., automated counter and mi- 
croscopic data). The limitations and uses of the procedure 
are tested using simulated data. 

THEORETICAL 

Let there be a population of spherical particles of initial diameters A0 
that are randomly distributed on a numbers basis according to the con- 
tinuous density function fn(Ao) or on a weight basis according to the 
density function f#,)(Ao). The dissolution profile of such a population of 
particles exposed to a dissolution medium is often analytically expressed 
in terms of the weight fraction undissolved. Let there be a functiong(A0, 
t )  of the random variable A0 and the dissolution time t that reflects a 
suitable dissolution model. For example, let A, be the diameter of a 
particle exposed to a dissolution medium for some function T of time so 
that: 

g(Ao, t )  = AT3 (Eq. 1) 

If the dissolution is diffusion rate limited and takes place under sink 
conditions, then g(A0, t ) describes the well-known cube root law kinetic 
model: 

g(A0, t )  = A,‘ = (A0 - T ) ~  0%. 2) 

For a numbers distribution, the weight fraction undissolved, W,, will 
be seen to be a ratio of expected values as follows: 

J all A,) 

If the initial population of particles is described on a weight basis, the 
weight fraction undissolved, W,,,, is the expected value of a ratio as fol- 
lows: 

where h(A0, t )  isg(A0, t )  divided byg(A0,O). 
If the mean E(A0) = p and variance V(A0) = u2 of the population of 

particles are known, the important expected value terms in Eqs. 3 and 
4 can be approximated, provided that f(A0) takes significant values in 
an interval near A0 = p of the order of u and that g(A0, t )  is “smooth” in 
this interval. The approximation given in Eqs. 5 and 6 in the terminology 
of this derivation is found in standard texts on probability and statistics 
(10, 11) and can be proved using a Taylor series expansion’. The ap- 

’ See Appendix for sdditional information on this technique. 
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Table I-Dissolution Profiles for Simulated Log-Normal 
Powders with Narrow Distribution Using the Cube Root Law 

Summary of Population Parameters 

Numbers Basis Weight Basis 

E InA,) = 3.68888 E 1nA = 3.71888 
Viln A,) = 0.01 Vlln A:] = 0.01 

E A = 41.43 
ViA:] = 17.25 

7 

10 0.4337 0.4336 0.4337 0.4366 
20 0.1381 0.1379 0.1381 0.1384 ~ 

29.63 0.0255 0.02534 0.02575 0.0231 
30 0.0234 0.02328 0.02370 0.0210 
35 0.0063 0.00589 0.00646 0.0037 

proximations of interest are: 

(Eq. 5) 
U2 

E(A,") = g(p,  t )  + T g " ( p ,  t )  

and: 

(Eq. 6) 

Thus, approximations for the weight fraction undissolved on a numbers 
basis or a weight basis are: 

E (F) A 3  = h(p, t )  +:h"(g, t )  
o3 

U 2  

W/n (approx) = (Eq. 7) 
U2 

g(p,  t )  + p""", t )  

g(r,  0)  + f l g " ( p ,  0 )  

and: 

(Eq. 8) W/,,(approx) = h ( p ,  t )  + - h"(a  t )  

Generally, the sample mean, p, ofa population will be understood to 
be the numbers or weight average, Ao, and the variances, uz, will be the 
square of the sample standard deviations2. Thus, for the cube root dis- 
solution model, the weight fraction undissolved of a multisized particle 
distribution will be: 

U 2  

2 

or: 

For another popular dissolution model, the Higuchi-Hiestand model 
(1): 

g(A0, t )  = A,3  = (Ao2 - T)" / *  (Eq. 11) 
and the weight fractions become: 

RESULTS AND DISCUSSION 

An examination of the adequacy of the approximations derived for the 
cube root model (Eqs. 9 and 10) or for the Higuchi-Hiestand model (Eqs. 
12 and 13) is limited to cases where drug particle sizes follow the log- 

The authors use & to represent the numbers average diameter in those ap- 
proximatiws derived for distributions evaluated on a numbers basis. The same 
character, A", represents a weight mean diameter in those approximations offered 
for distributions stated on a weight basis. 

Table 11-Dissolution Profiles for  Simulated LopNorma1 
Powders with Moderate Distribution Using the Cube Root Law 

Summary of Population Parameters 

Numbers Basis Weight Basis 

E 1nA = 3.68888 E InA,) = 3.95888 
V{lnA:{ = 0.09 

E ( A ,  =41.84 E ( A , )  = 54.81 
V(A,] = 164.87 

V[ln A,) = 0.09 

V(A,) = 282.92 
- 

7 

5 0.7320 0.7262 0.7314 0.7505 
10 0.5215 0.5113 0.5197 0.5464 

0.3479 16.26 0.3273 0.3129 
25 0.1575 0.1395 0.1547 0.1609 
40 0.0372 0.00975 0.04533 0.0197 

0.3240 

normal distribution as given by: 

(Es. 14) 

where m and s2 refer to the (numbers basis) population mean E(ln A d  
and variance V(ln Ao), respectively. The approximations, however, re- 
quire a knowledge of the arithmetic mean E(A0) and the corresponding 
variance V(A0). These may be calculated from: 

E ( A ~ )  = ern+sV2 (Eq. 15) 

(Eq. 16) 

and: 

V(Ao)  = E(Ao2) - [E(A0)]2 = (e.9' - l)e"1++'2 

These transformations arise from the appropriate use of Eq. 9 of Ref. 
4. Since approximations are given for populations where particle-size 
parameters are evaluated on a numbers basis or a weight basis, it is also 
necessary to use the Hatch and Choate relationships for log-normal 
distributions (12), which state: 

mweight = mnumbers + 3~Lrn1,err (Eq. 17) 

Sie igh t  = S h m b e r a  (Eq. 18) 
Cube Root Model-The exact and approximate weight fraction un- 

dissolved quantities for the cube root kinetic model are presented in 
Tables 1-111. The exact weight fraction undissolved is taken from pub- 
lished data (4). The data in Table I are for a log-normal population with 
a relatively narrow distribution, as evidenced by the near quality between 
EIAolnumbers and E[A0lweight. The approximate W/ values are reasonably 
close to Wf(exact) throughout the dissolution profile, although 
W,, (approx) from Eq. 10 appears to give slightly better results. 

The populations shown in Tables I1 and 111 stress the approximations 
by increasing the magnitude of the standard deviation. The approxi- 
mation values given in Table I1 are adequate throughout most of the 
dissolution time frame. Only at  T = 40 do the approximate values for 
W/,(approx) begin to diverge from the exact values. The W,,, (approx) 
values begin to diverge from the exact values a t  T = 25, but this approx- 

Table 111-Dissolution Profiles for Simulated LogNorma1 
Powders with Wide Distribution Using the Cube Root  Law 

Summary of Population Parameters 

Numbers Basis Weight Basis 
E 1nA = 3.68888 E 1nA = 4.43888 
v[ln .A f = 0.25 Vf.lnA:{ = 0.25 

E ( A , )  = 95.96 
V(A,) = 2615 

E ( A , )  = 45.33 
V(.4,) = 583.51 

3 - T  

7 Wf(exact) Wf,(approx) Wfw(approx) ( >,, >, __ 
8.93 0.6929 0.6469 0.6875 0.7460 
10 0.6625 0.6142 0.6559 0.7188 
20 0.4326 0.3513 0.4140 0.4960 
40 0.1831 0.0549 0.1639 0.1983 
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Table IV-Dissolution Profiles for Simulated Log-Normal 
Powders with Narrow Distribution Using the 
Higuchi-Hiestand Model 

Summary of Population Parameters 

Numbers Basis Weight Basis 

E 1nA = 2.99573 E(lnA,)  = 3.02573 
V{lnA:] = 0.01 

E A = 20.10 E A  = 20.712 
V[A:] = 4.061 V{A:{ = 4.3116 

V(lnA,) = 0.01 

Wf(numerical 
T integration) Wf,,(approx) Wf,(approx) W 

30.77 0.8911 0.8913 0.8913 0.8944 
92.31 0.6873 0.6874 0.6874 0.6953 

0.5031 0.5136 153.85 0.5032 0.5031 
246.15 0.2702 0.2697 0.2689 0.2783 
307.69 0.1519 0.1501 0.1477 0.1504 
369.23 0.07189 0.07870 0.06739 0.0520 

0.05706 0.0176 400.00 0.04596 - 

imation is satisfactory over a t  least 80% of the total dissolution profile. 
A log-normal population, where E [ h  A O ] , , , , ~ ~ ~ ~ ~  = 3.68888 and 

V[ln A o ] ~ ~ ~ ~ ~ ~ ~  = 0.25, represents a rigorous test for the approximate 
expressions for the weight fraction undissolved. This population stresses 
the approximations by virtue of the large standard deviation and the 
skewed shape of the density function. The approximate and exact W, 
values for this population are presented in Table 111. Both the W,” and 
W, values are consistently lower than the exact values. Again, the weight 
fractions undissolved calculated using Eq. 10 are more satisfactory than 
those calculated using Eq. 9. 

Also presented in Tables 1-111 are (& - 1)3/&,:3 values, which reflect 
the dissolution profile for a monosized powder that obeys the cube root 
law. This term obtains from either approximation in Eq. 9 or 10 when 6% 

becomes zero. For a monosized population, the average diameter on a 
numbers basis is equal to the average diameter on a weight basis so that 
(A0 - T ) ~ / A o ~  calculated on either basis leads to the same estimate of 
weight fraction undissolved. However, for powders where particles have 
a wide range of sizes, the calculation on a weight basis generally provides 
a better estimate of the undissolved weight fraction. The calculation 
provided in Tables 1-111 employs the average diameters on a weight basis 
as signified by a subscript w .  

The first term of Eq. 10 is actually [(& - T ) : ~ / ; ; ~ o ~ ] ~ , .  The remaining 
term in Eq. 10 indicates the effect of the particle-size distribution on the 
dissolution profile. Thus, this approximation provides a means of 
quantitating the errors that may occur when data on a polydisperse 
powder are treated as Laving come from a monosized powder. Although 
the simple [(A0 - T ) ~ / A O ~ ] ~  is useful for narrow distributions, the data 
of Tables 1-111 indicate that the weight basis approximation, which in- 
cludes consideration of size distribution, provides better estimates of the 
weight fraction undissolved. 

Table V-Dissolution Profiles for Simulated Log-Normal 
Powders with Moderate Distribution Using the 
Iliguchi-Hiestand Model 

Summary of Population Parameters 

Numbers Basis Weight Basis 
- 

EflnA,  = 2.99573 E(lnA, = 3.11573 
V(lnA,{ = 0.04 V(lnA,] = 0.04 

E(A,) = 23.01 
V(A,) = 21.60 

T 

30.77 
92.31 

153.85 
246.15 
307.69 
369.23 
461.54 

0.9036 
0.7229 
0.5603 
0.3580 
0.2554 
0.1774 
0.09972 

0.9031 
0.7215 
0.5579 
0.3529 
0.2533 
0.2145 - 

0.9040 
0.7232 
0.5587 
0.3471 
0.2340 
0.1502 
0.1185 

1 .. 
0.9141 
0.7502 
0.5975 
0.3914 
0.2711 
0.1 665 
0.0046 

Table VI-Dissolution Profiles for  Simulated Log-Normal 
Powders with Moderately Wide Distribution Using the 
Higuchi-Hiestand Model 

Summary of Population Parameters 

Numbers Basis Weight Basis 

E(lnA, = 2.99573 E lnA,) = 3.26573 
V(lnAo] = 0.09 A n  A , )  = 0.09 

E(A, = 20.92 
V(A,] = 41.22 

E(A,) = 27.41 
V(A,) = 70.73 

x,z - 1 . 5  

Wdnumerical 
1 integration) Wf,(approx) Wf,,,(approx) ( 2,’ 3, 

30.77 0.9203 
92.31 0.7710 

153.86 0.6373 
246.15 0.4710 
307.69 0.3819 
369.23 0.3112 
461.54 0.2279 
500.00 0.2007 

0.9194 0.9225 0.9392 
0.7684 0.7750 0.8215 
0.6326 0.6384 0.7091 
0.4651 
0.3883 

0.4560 0.5513 ~ .- - ~- 
0.3512 0.4537 
0.2620 0.3627 
0.1637 0.2395 
0.1385 0.1935 

Equation 10 can be written in expanded form and expressed as: 

If & and u2 are known, Eq. 19 can be solved by using a one-parameter 
model. Furthermore, as u2 4 0, Eq. 19 assumes a perfect cube form: 

Recently, dissolution data for 20-40-mesh salicylic acid particles were 
reported (9). These data were treated using the cubic form of the ex- 
pression to fit the experimental weight fraction undissolved values. For 
a sieve cut of this width, a considerable bias can be introduced if the terms 
accounting for the distribution effects are neglected. In fact, the curve 
fitting of data to a cubic form without regard for particle-size effects 
would lead to a parameter that would be in error by a factor having a value 
between [I t (u*/&~)] and [ l  t 6(u*/Zi0*)]~/~. For a powder uniformly 
distributed over a size range of 20-40 mesh, the factor would be between 
1.037 and 1.069’. This point is significant in cases where critical model 
testing is the objective. 

Higuchi-Hiestand Model-The approximate expressions for the 
Higuchi-Hiestand kinetic model (Eqs. 12 and 13) were tested (Tables 
IV-VI). The exact weight fraction undissolved was calculated from Eq. 
4 using standard numerical integration techniques. 

The weight fraction undissolved values shown in Table IV are for a 
log-normal population where E(ln = 2.99573 and V[ln 
A~lnumbers = 0.01. The approximate expressions yield values that are less 
than 3% in error when compared with those calculated using numerical 
integration over almost the total dissolution profile. At T = 369.23, the 
approximate expressions give values that are more than 5% in error when 
compared with the “exact” values. However, a t  this point, more than 90% 
of the initial population weight has dissolved. 

The data in Table V are for a log-normal population where E[ln 
Aolnumbers = 2.99573 and V[ln = 0.04. This population was 
designed to provide a more exacting test of the approximations by virtue 
of a large population variance. In this case, the coefficient of variation, 
i.e., (V[AO])’/~/E[AO], is about 20%; the coefficient of variation for the 
data in Table IV is about 10%. The WtU,(approx) values for this example 
follow the exact values closely over about 75% of the total dissolution 
profile. At T = 369.23 and 461.54, the approximations begin to drift away 
from the exact values; at T = 470, the approximation fails. The failure at 
the latter end of the dissolution profile is closely related to the magnitude 
of the variance and th_e form of the apzoximate expression. It can be seen 
from Eq. 13 that as (Ao2 - T )  - 0, r/(Ao2 - T ) ’ / ~  approaches infinity and 
becomes the dominating term. 

Analysis of the W,,, (approx) values shown in Table I1 shows that the 
approximation is useful over about 75% of the total dissolution profile. 

, 

3 The terms E(A0) and V ( A o )  for a uniform distribution are calculable from Eq. 
3 of Ref. 13 where R = 1. 
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Again, however, the magnitude of the variance and the form of the ap- 
proximation contribute to the failure.-According to Eq. 12, the term 
Ao2/(Ao2 - 7)lI2 approaches infinity as Ao2 - T approaches zero. This is 
even more critical for a population based on numbers because 
EIAo]numbers < E [A~lwe igh t  for the log-normal populations under 
study. 

The data in Table VI are for a log-normal drug population where 
E[ln Aolnumbers = 2.99573 and V[ln A o ] ~ ~ ~ ~ ~ ~ ~  = 0.09. The coefficient of 
variation for this population is about 30%. Therefore, this population 
represents a severe test of the approximation. The data in Table VI show 
that the approximations are useful over about 60% of the total dissolution 
even for this population. Again, the failure of the approximations is re- 
lated to the magnitude of the standard deviation and the form of the 
approximate expression. 

The first term in Eq. 13, [(A$ - T ) / & ~ ] ~  5, was also tested as an ap- 
proximation for the weight fraction undissolved. The data presented in 
Tables IV-VI show that this approximation is only useful for narrow 
distributions. Therefore, experimental dissolution data for many mul- 
tisized drug populations will be incorrectly interpreted if the term for 
the distribution effects is not included. 

When testing the approximate expressions for different kinetic models, 
some consideration must be given to the mathematical form of the kinetic 
equation. For the cube root model, each particle, independent of size, 
dissolves at the same rate with regard to diameter. On the other hand, 
small particles dissolving according to the Higuchi-Hiestand model 
dissolve much more rapidly than larger particles. The approximate ex- 
pressions for the cube root model are only concerned with a population 
of particles all dissolving at  a uniform rate. Approximate expressions for 
the Higuchi-Hiestand kinetic model, however, must deal with a popu- 
lation where the temporal characteristics of the sample mean and vari- 
ance at  time T are more complex. With this in mind, it is interesting to 
compare the data in Table I1 with the data in Table VI. The approximate 
weight fraction undissolved values in Table I1 are for the cube root model, 
and those in Table VI are for the Higuchi-Hiestand model. The coeffi- 
cient of variation in both cases is about 30%. Comparison of the data in 
Tables I1 and VI shows that the approximations for the cube root model 
are better than those for the Higuchi-Hiestand model. 

SUMMARY 

Approximate expressions for the weight fraction undissolved were 
tested using multisized (log-normal) distributions in connection with the 
cube root and Higuchi-Hiestand kinetic models. These simulated data 
show several important features: 

1. The approximations are based on a recognized mathematical 
treatment and not on empirical relationships. 

2. The distribution effects are accounted for, but only a knowledge 
of the arithmetic mean and standard deviation of the sample is re- 
quired. 

3. The approximations are not dependent upon a knowledge of the 
exact analytical form of the particle-size density function, i.e., whether 
gamma, normal,,log normal, etc. 

4. The approximations lend themselves to usefulness with real labo- 
ratory data such as might be acquired by an automated counter (number 
or weight data), microscopic examination (numbers data), or sieve frac- 
tions (weight data). 

5. The approximations are general and are potentially useful with any 
kinetic model that is a t  least twice differentiable a t  Ao = p. 

6. The approximations may find usefulness in a modeling technique 
to determine dissolution rate constants from dissolution data. 

APPENDIX 

The approximation of an expected value of a function of a random 
variable, as set forth in various texts on statistics (10, l l ) ,  first requires 
approximating that function through a Taylor series expansion and then 
taking the expected value of the approximation to the function. In this 
case, the function of the random variable A0 (the initial particle diameter) 
is the dissolution model, e.g., g(A0, t ) .  It must be appreciated that the 
expected value of this function: 

must be evaluated considering t as a constant whose value can be supplied 
after the integration. This consideration is important in derivations of 
dissolution equations by Brooke (4,5,13) and Pedersen and Brown (7). 

Therefore, it is imperative that all operations prior to the actual calcu- 
lation of Wf consider t a constant. 

The Taylor series approximation to a function of the random variable 
Ao, e.g., g(A0, t ) ,  is most accurate in a region where values of A,) are within 
1 SD, u, of the initial population mean, p. Both p and u are parameters 
of the initial (time zero) particle-size distribution. The expansion about 
p is written: 

g(Ao, t )  N g(p, t )  + (Ao - p)g’(p, t )  + ‘h (Ao - pI2g”(p, t )  -t 

(Eq. A2) 
For t as a constant,g(p, t ) ,  g’(p, t ) ,  etc., are constants and the expected 
value E[g(Ao, t ) ]  is approximated by: 

gG, t )  +g’(p, t)E(Ao - p )  + ‘hg’’b, t)E(Ao - p P  t . . . 
(Eq. A3) 

By neglecting higher order terms in the expansion and by recognizing that 
E(A0 - p)  is zero and E(A0 - p)2 is u2, the approximation for E[g(Ao, t ) ]  
is written: 

E[g(Ao, t)I N g(p, t )  + ‘hg”(r, t )u2  (Eq. A4) 

The use of Eq. A4 is illustrated by deriving the approximate weight 
fraction undissolved when the particle distribution is expressed on a 
numbers basis and the particles dissolve according to the Higuchi- 
Hiestand model. Here: 

g(Ao, t )  = (Ao2 - 7)’” = A,:’ (Eq. A51 

which is twice differentiated in respect to the initial particle size, A,,, while 
t is considered a constant. That is: 

g’(Ao, t )  = 3(Ao2 - T ) * / ~ A ~  (Eq. A61 
and: 

g”(A0, t )  = 3(Au2 - T ) ~ ”  + 3A02/(Ao2 - T ) ~ ’ ~  (Eq. A7) 

In using Eq. A4, it is necessary to evaluate g(Ao, t )  and g”(Ao, t )  at  the 
populationr-nean p. For this purpose, the arithmetic mean of the initial 
diameters, Ao, is considered an appropriate estimator. Furthermore, it 
is experimentally available. Therefore: 

and: 
- 

E[g(Ao, t)t=o] = E(A$) N A$ + 3u2& (Eq. A9) 

and Wln(approx) for the Higuchi-Hiestand model becomes Eq. 12 of the 
text by dividing Eq. A8 by Eq. A9. 

The use of the approximate equations for weight undissolved is illus- 
trated by considering Wfn (approx) for the Higuchi-Hiestand motel. 
Here, data are taken from Table V where the average particle size, Ao, 
for the numbers distribution is 20.40 pm and the squared standard de- 
viation, V(Ao), is 16.99 pm2. By using Eq. 12 of the text, w,,, (approx) for 
7 = 153.85 pm is: 

Wfn (approx) = 

[(20.40)’ - 153.85]3’2 + 

- [(20.40)’ - 153.85]’/’ I % (16.99) [ (20‘40)2 
[(20.40)’ - 153.85]’/2 

(20.4013 + 3(16.99)(20.40) 
= 0.5587 (Eq. A10) 
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Dissolution Profiles for 
Multisized Prednisolone Acetate Suspensions 

STEPHEN A. HOWARDX, JOHN W. MAUGER, and 
LAWAN PHIfSANTI 

Abstract Particle-size measurements and in uitro dissolution char- 
acteristics of commercial and formulated suspensions of prednisolone 
acetate were determined using a resistance particle counter and a spin- 
ning filter apparatus, respectively. Significant differences in dissolution 
rates were noted for the commercial suspensions. Particle size affected 
dissolution but did not account for all observed variations in the disso- 
lution rate. Formulation differences, specifically the presence of hy- 
droxypropyl methylcellulose, in suspensions seemed to be important in 
dissolution. 

Keyphrases Prednisolone acetate-multisized suspensions, disso- 
lution profiles and particle-size measurements 0 Suspensions, multi- 
sized-prednisolone acetate, dissolution profiles and particle-size mea- 
surements Dissolution-multisized suspensions of prednisolone ace- 
tate, effect of particle size Particle size-effect on dissolution of 
prednisolone acetate suspensions Glucocorticoids-prednisolone ac- 
etate, multisized suspensions, dissolution profiles and particle-size 
measurements 

The dissolution rate and in uiuo physiological avail- 
ability of drugs are important research areas (1-5). The 
dissolution rate of a solid dosage form such as a tablet or 
a capsule can be the rate-limiting step in availability for 
the in uiuo absorption of the active ingredient (6-8), par- 
ticularly for poorly soluble or poorly wetted drugs (9). 

At present, almost all dissolution rate research efforts 
are directed toward tablets and capsules. Although sus- 
pensions share many physical-chemical characteristics of 
tablets and capsules with respect to the dissolution process, 
they are almost completely ignored. Since tablets and 
capsules disintegrate into powder suspensions, pharma- 
ceutical suspensions share the dissolution process as a 
rate-limiting step for absorption and bioavailability. 

Bates et al. (10) studied the dissolution rates of nitro- 
furantoin tablets and suspensions and commented that it 
was inconsistent to provide a USP dissolution test for ni- 
trofurantoin tablets without including a dissolution rate 
test for the suspension. They concluded that: “the ratio- 
nale underlying the official dissolution rate specification 
for nitrofurantoin tablets appears quite arbitrary and in- 
consistent with the dissolution profile and potential tox- 
icity of the official suspension dosage form.” 

These comments substantiate a need to pursue disso- 
lution rate testing of suspension dosage forms. In the 

current study, the dissolution and particle-size profiles of 
several commercially available suspensions were deter- 
mined to obtain information about brand-to-brand vari- 
ation and formulation characteristics directly related to 
dissolution. 

Commercially available steroid ophthalmiclotic sus- 
pensions were studied. They represent a dosage form that 
requires dissolution as a prerequisite to therapeutic 
availability. These products contain a poorly soluble mi- 
cronized steroid in a suitable vehicle. The solubility and 
particle-size characteristics of these products make them 
desirable prototype suspensions to study. 

EXPERIMENTAL 
Dissolution Testing-All reported dissolution data were obtained 

using a device’ described by Shah et al. (11). The basic features of the 
apparatus are a large volume fluid container, a rotating filter assembly, 
and an external variable-speed magnetic stirrer. The sample basket was 
removed. 

The rotating filter assembly provides variable intensity of mild laminar 
liquid agitation and also functions as an in situ nonclogging filter to 
permit efficient intermittent or continuous filtration of dissolution fluid 
samples during the dissolution process. The assembly is suspended and 
freely rotates in the center of the flask on the flared end of a glass capillary 
pilot tube. The assembly rotates by means of a controlled, variable-speed, 
external magnetic stirrer coupled with a magnetic bar embedded in the 
bottom part of the assembly. A 0.5-pm porosity sintered stainless steel 
filter also was employed. 

One liter of distilled water was transferred into the flask, and the fluid 
was allowed to equilibrate at  25’. The stirring speed of the filter assembly 
was 960 rpm. A strobe lamp2 was used to standardize the stirring 
speed. 

Filtered fluid samples were continuously withdrawn through the 
capillary pilot tube at  the rate of 100 ml/min and were circulated through 
the spectrophotometer and back to the flask. Air bubbles were periodi- 
cally released from an air trap. The system was allowed to run for at  least 
15 min to ensure the consistency of the flow and stirring rate. The spec- 
t r~photometer~ was then calibrated for zero absorbance at  246 nm with 
the dissolution medium in the reference cell. The baseline on the strip- 
chart4 paper also was adjusted corresponding to zero absorbance. 

The dissolution apparatus was made available through the courtesy of The 
ohn Co., Kalamazoo, Mich. 
Glass Instrument Co., Quincy, Mass. 

8 Perkin-Elmer double-beam spectrophotometer, Coleman 124, Hitachi, Ltd., 

4 Chart recorder model SRG, Sargent-Welch Scientific Co., Cleveland, Ohio. 
Tokyo, Japan. 
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